The design requires only two miniature valves, which take the place of eight bulky, energy-consuming valves. As a result, the cost is cut from thousands to hundreds of dollars. It operates using a 3.7-volt lithium-ion battery within a control box weighing less than an iPhone 13, in contrast to previous technology that required a wall outlet.
“My definition of wearable is you can wear it and do whatever you want, and not be plugged into a wall,” said author Carolyn Ren. “Bringing in the microfluidics field, we wanted to make the system battery-powered but without compromising the performance.”
By placing a sensor between the sleeve prototype and the arm, the team measured and optimized the sleeve pressure to encourage fluid flow.
The researchers are currently recruiting for patient testing. They intend to use their device patent to develop a commercially viable product. Microfluidic chips could also be incorporated into prosthetics for lower leg amputees.
Pressure is unevenly distributed around the leg during walking, and the leg swells to change sizes throughout the day, but traditional prosthetic sockets cannot adjust accordingly. A balloon system like the lymphedema sleeve could apply the correct amount of pressure to the leg dynamically and inflate or deflate to change size on demand.
“We look at these problems from different angle, but I think there are a lot more things microfluidics can contribute to these areas,” said Ren.
Source: American Institute of Physics (AIP)
Source: Healthcare in Europe